SBML Model Report

"Untitled"

July 2, 2015

1 General Overview

This is a document in SBML Level 2 Version 4 format. Table 1 shows an overview of the quantities of all components of this model.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	71
events	0	constraints	0
reactions	72	function definitions	0
global parameters	141	unit definitions	6
rules	0	initial assignments	0

 Table 1: The SBML components in this model.

 All components are described in more detail in the following sections.

Model Notes

2 Unit Definitions

This is an overview of six unit definitions.

2.1 Unit substance

Name substance

Definition mmol

2.2 Unit volume

Name volume

Definition 1

2.3 Unit area

Name area

 $\text{Definition} \ m^2$

2.4 Unit length

Name length

 $\textbf{Definition} \ m$

2.5 Unit time

Name time

Definition s

2.6 Unit per_second

Definition s^{-1}

3 Compartments

This model contains two compartments.

	Table 2. 1 Toperties of an compartments.							
Id	Name	SBO	Spatial	Size	Unit	Constant	Outside	
			Dimensions					
compartment	ompartment compartment		3	1	litre	\checkmark	default	
default			3	1	litre	\checkmark		

Table 2: Properties of all compartments

3.1 Compartment compartment

This is a three-dimensional compartment with a constant size of one litre that is surrounded by default.

Name compartment

3.2 Compartment default

This is a three-dimensional compartment with a constant size of one litre.

4 Species

This model contains 71 species. The boundary condition of seven of these species is set to true so that these species' amount cannot be changed by any reaction. Section 7 provides further details and the derived rates of change of each species.

		Table 3: Properties of each species.			
Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
R	R	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
Ra	Ra	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
LR	LR	compartment	$mmol \cdot l^{-1}$		
LRa	LRa	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
R_Gaq_GDP_bg	R_Gaq_GDP_bg	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
Ra_Gaq_GDP_bg	Ra_Gaq_GDP_bg	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
LR_Gaq_GDP_bg	LR_Gaq_GDP_bg	compartment	$mmol \cdot l^{-1}$		
LRa_Gaq_GDP_bg	LRa_Gaq_GDP_bg	compartment	$mmol \cdot l^{-1}$		
Gaq_GDP_bg	Gaq_GDP_bg	compartment	$mmol \cdot l^{-1}$		
Ra_Gaq0_bg	Ra_Gaq0_bg	compartment	$mmol \cdot l^{-1}$		
LRa_Gaq0_bg	LRa_Gaq0_bg	compartment	$mmol \cdot l^{-1}$		
Ra_Gaq_GTP_bg	Ra_Gaq_GTP_bg	compartment	$mmol \cdot l^{-1}$		
LRa_Gaq_GTP_bg	LRa_Gaq_GTP_bg	compartment	$mmol \cdot l^{-1}$		
GaqGTP	GaqGTP	compartment	$mmol \cdot l^{-1}$		
Gbg	Gbg	compartment	$mmol \cdot l^{-1}$		
GaqGDP	GaqGDP	compartment	$mmol \cdot l^{-1}$		
IP3	IP3	compartment	$mmol \cdot l^{-1}$		
DAG	DAG	compartment	$mmol \cdot l^{-1}$		
Ca	Ca	compartment	mmol		\square
IP3R	IP3R	compartment	$\operatorname{mmol} \cdot l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
IP3R_Ca	IP3R_Ca	compartment	$mmol \cdot l^{-1}$		
IP3R_2Ca	IP3R_2Ca	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
IP3R_3Ca	IP3R_3Ca	compartment	$mmol \cdot l^{-1}$		
IP3R_4Ca	IP3R_4Ca	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
IP3R_IP3	IP3R_IP3	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
IP3R_Open	IP3R_Open	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
CaM	CaM	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
CaM_Ca	CaM_Ca	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
CaM_2Ca	CaM_2Ca	compartment	$mmol \cdot l^{-1}$		
CaM_3Ca	CaM_3Ca	compartment	$mmol \cdot l^{-1}$		
CaM_4Ca	CaM_4Ca	compartment	$mmol \cdot l^{-1}$		
CaN	CaN	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
CaN_Ca	CaN_Ca	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
CaN_2Ca	CaN_2Ca	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
CaN_3Ca	CaN_3Ca	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
CaN_4Ca	CaN_4Ca	compartment	$mmol \cdot l^{-1}$		
CaN_4Ca_CaM_2Ca	CaN_4Ca_CaM_2Ca	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
CaN_4Ca_CaM_3Ca	CaN_4Ca_CaM_3Ca	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
CaN_4Ca_CaM_4Ca	CaN_4Ca_CaM_4Ca	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
PLC2_PIP2	PLC2_PIP2	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
PLC2_Ca_PIP2	PLC2_Ca_PIP2	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
PLC2_Ca	PLC2_Ca	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
PLC2_Gq_PIP2	PLC2_Gq_PIP2	compartment	$mmol \cdot l^{-1}$		
PLC2_Ca_Gq_PIP2	PLC2_Ca_Gq_PIP2	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
PLC2_Ca_Gq	PLC2_Ca_Gq	compartment	$\operatorname{mmol} \cdot \mathbf{l}^{-1}$		
ІРЗК	IP3K	compartment	$\operatorname{mmol} \cdot l^{-1}$		
IP3K_Ca	IP3K_Ca	compartment	$mmol \cdot l^{-1}$		

S

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
IP3K_2Ca	IP3K_2Ca	compartment	$mmol \cdot l^{-1}$		
IP3K_2Ca_IP3	IP3K_2Ca_IP3	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
IP4	IP4	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
IP5P	IP5P	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
IP5P_IP3	IP5P_IP3	compartment	$mmol \cdot l^{-1}$		
IP2	IP2	compartment	$mmol \cdot l^{-1}$		
CaER	CaER	compartment	$mmol \cdot l^{-1}$		
Ca_Cleft	Ca_Cleft	compartment	$mmol \cdot l^{-1}$		
SERCA	SERCA	compartment	$mmol \cdot l^{-1}$		
SERCA_Ca	SERCA_Ca	compartment	$mmol \cdot l^{-1}$		
SERCA_2Ca	SERCA_2Ca	compartment	$mmol \cdot l^{-1}$		
PMCA	PMCA	compartment	$mmol \cdot l^{-1}$		
PMCA_Ca	PMCA_Ca	compartment	$mmol \cdot l^{-1}$		
NaCa_Exch	NaCa_Exch	compartment	$mmol \cdot l^{-1}$		
NaCa_Exch_Ca	NaCa_Exch_Ca	compartment	$mmol \cdot l^{-1}$		
NaCa_Exch_2Ca	NaCa_Exch_2Ca	compartment	$mmol \cdot l^{-1}$		
GDP	GDP	compartment	$mmol \cdot l^{-1}$		
GTP	GTP	compartment	$mmol \cdot l^{-1}$		$\overline{\mathbf{Z}}$
L	L	compartment	$mmol \cdot l^{-1}$		$\overline{\mathbf{Z}}$
RGS	RGS	compartment	$mmol \cdot l^{-1}$		$\overline{\mathbf{Z}}$
PIP2	PIP2	compartment	$mmol \cdot l^{-1}$		$\overline{\mathbf{Z}}$
iCaAMPAR	iCaAMPAR	compartment	mmol		$\overline{\mathbf{Z}}$
iCaNMDAR	iCaNMDAR	compartment	mmol		$\overline{\mathbf{Z}}$
CaPSD	CaPSD	compartment	mmol		

5 Parameters

This model contains 141 global parameters.

Id	Name	SBO	Value	Unit	Constant
position	Position relative to		100.000		
	release site (nm)				
J0_k1			0.001	dimensionless	
J0_k2			1.000	dimensionless	
J1_k1			0.001	dimensionless	
J1_k2			1.000	dimensionless	
J2_k1			0.001	dimensionless	
J2_k2			1.000	dimensionless	
J3_k1			0.001	dimensionless	
J3_k2			1.000	dimensionless	
J4_k1			5000.000	dimensionless	
J4_k2			20.000	dimensionless	
J5_k1			5000.000	dimensionless	
J5_k2			20.000	dimensionless	
J6_k1			5000.000	dimensionless	
J6_k2			20.000	dimensionless	\checkmark
J7_k1			5000.000	dimensionless	
J7_k2			20.000	dimensionless	
J8_k1			0.600	dimensionless	\checkmark
J8_k2			0.001	dimensionless	
J9_k1			0.600	dimensionless	
J9_k2			0.001	dimensionless	
J10_k1			0.100	dimensionless	
J10_k2			$6.5 \cdot 10^{-5}$	dimensionless	
J11_k1			0.100	dimensionless	
J11_k2			$6.5 \cdot 10^{-5}$	dimensionless	
J12_k1			0.003	dimensionless	
J12_k2			30.000	dimensionless	
J13_k1			30.000	dimensionless	
J13_k2			$5 \cdot 10^{-6}$	dimensionless	\checkmark
J14_k1			$1.5 \cdot 10^{-8}$	dimensionless	
J14_k2			0.000	dimensionless	\checkmark
J15_k1			0.003	dimensionless	
J15_k2			30.000	dimensionless	\checkmark
J16_k1			30.000	dimensionless	\checkmark
J16_k2			$5 \cdot 10^{-6}$	dimensionless	\checkmark

Table 4: Properties of each parameter.

[d	Name	SBO	Value	Unit	Constant
J17_k1			150.000	dimensionless	
J17_k2			0.000	dimensionless	
J18_k1			10^{-6}	dimensionless	$\overline{\mathbf{A}}$
J18_k2			0.000	dimensionless	$\overline{\mathbf{A}}$
J19_k1			1000.000	dimensionless	$\overline{\mathbf{A}}$
J19_k2			0.000	dimensionless	
J20_Vmax			0.000	dimensionless	
J20_Km1			0.100	dimensionless	\checkmark
$J21_Vmax$			0.000	dimensionless	
J21_Km1			0.100	dimensionless	
J76_k1			8.990	dimensionless	
J76_k2			0.005	dimensionless	$\overline{\checkmark}$
J77_k1			20.000	dimensionless	\checkmark
J77_k2			0.010	dimensionless	\checkmark
J78_k1			40.000	dimensionless	\checkmark
J78_k2			0.015	dimensionless	$\overline{\checkmark}$
J79_k1			60.000	dimensionless	$\overline{\checkmark}$
J79_k2			0.020	dimensionless	$\overline{\checkmark}$
J80_k1			12000.000	dimensionless	
J80_k2			25.000	dimensionless	
J81_k1			12000.000	dimensionless	
J81_k2			5.000	dimensionless	\checkmark
J87_k1			16.000	dimensionless	
J87_k2			0.405	dimensionless	
J88_k1			16.000	dimensionless	
J88_k2			0.405	dimensionless	
J89_k1			1.500	dimensionless	
J89_k2			0.002	dimensionless	
J90_k1			1.500	dimensionless	
J90_k2			0.002	dimensionless	
J91_k1			100.000	dimensionless	
J91_k2			0.001	dimensionless	
J92_k1			100.000	dimensionless	
J92_k2			0.001	dimensionless	
J93_k1			1.897	dimensionless	
J93_k2			0.001	dimensionless	
J94_k1			1.897	dimensionless	$\overline{\mathbf{Z}}$
J94_k2			0.001	dimensionless	$\overline{\mathbf{Z}}$
J95_k1			0.240	dimensionless	\mathbf{V}
J95_k2			0.001	dimensionless	\mathbf{V}
J96_k1			2.238	dimensionless	\mathbf{V}
J96_k2			0.001	dimensionless	$\overline{\mathbf{Z}}$

Id	Name	SBO	Value	Unit	Constant
J97_k1			600.000	dimensionless	
J97_k2			0.001	dimensionless	
J163_k1			300.000	dimensionless	
J163_k2			0.100	dimensionless	$\overline{\mathbf{Z}}$
J164_k1			900.000	dimensionless	$\overline{\checkmark}$
J164_k2			0.030	dimensionless	$\overline{\checkmark}$
J165_k1			1000.000	dimensionless	
J165_k2			$6 \cdot 10^{-7}$	dimensionless	
J166_k1			1200.000	dimensionless	
J166_k2			$6 \cdot 10^{-7}$	dimensionless	
J167_k1			1000.000	dimensionless	$\overline{\checkmark}$
J167_k2			$6 \cdot 10^{-7}$	dimensionless	
J168_k1			$3 \cdot 10^{-5}$	dimensionless	
J168_k2			0.000	dimensionless	
J169_k1			250.600	dimensionless	$\overline{\checkmark}$
J169_k2			0.000	dimensionless	$\overline{\mathbf{Z}}$
J170_k1			1.000	dimensionless	$\overline{\mathbf{Z}}$
J170_k2			0.017	dimensionless	$\overline{\mathbf{Z}}$
J171_k1			1.000	dimensionless	$\overline{\mathbf{Z}}$
J171_k2			0.017	dimensionless	$\overline{\checkmark}$
J172_k1			0.003	dimensionless	
J172_k2			0.000	dimensionless	
J173_k1			0.003	dimensionless	$\overline{\checkmark}$
J173_k2			0.000	dimensionless	$\overline{\checkmark}$
J175_k1			33.332	dimensionless	
J175_k2			0.010	dimensionless	
J176_k1			33.332	dimensionless	
J176_k2			0.010	dimensionless	
J177_k1			100.000	dimensionless	
J177_k2			0.080	dimensionless	
J178_k1			0.020	dimensionless	
J178_k2			0.000	dimensionless	\checkmark
J179_k1			10.000	dimensionless	\checkmark
J179_k2			0.072	dimensionless	\checkmark
J180_k1			0.018	dimensionless	
J180_k2			0.000	dimensionless	$\overline{\mathbf{Z}}$
J181_k1			10.500	dimensionless	$\overline{\mathbf{Z}}$
J181_k2			0.000	dimensionless	$\overline{\mathbf{Z}}$
J182_k1			130.950	dimensionless	\mathbf{V}
J182_k2			1.000	dimensionless	
J183_k1			130.950	dimensionless	\mathbf{V}
J183_k2			1.000	dimensionless	

Id	Name	SBO	Value	Unit	Constant
J184_k1			0.250	dimensionless	
J184_k2			0.000	dimensionless	
J185_k1			0.250	dimensionless	\checkmark
J185_k2			0.000	dimensionless	
J186_k1			$1.5 \cdot 10^{-4}$	dimensionless	
J186_k2			0.000	dimensionless	
J187_k1			25000.000	dimensionless	
J187_k2			2.000	dimensionless	
J188_k1			0.500	dimensionless	
J188_k2			0.000	dimensionless	
J189_k1			93.827	dimensionless	
J189_k2			4.000	dimensionless	
J190_k1			93.827	dimensionless	
J190_k2			4.000	dimensionless	
J191_k1			1.000	dimensionless	
J191_k2			0.000	dimensionless	
J192_k1			1.000	dimensionless	
J192_k2			0.000	dimensionless	
J193_k1			10^{-5}	dimensionless	
J193_k2			0.000	dimensionless	
J174_k1			0.003	dimensionless	
J174_k2			0.000	dimensionless	

6 Reactions

This model contains 72 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by one or more modifiers, the identifiers of the modifier species are written above the reaction arrow.

No	№ Id Name Reaction Equation					
TN⊓	10	INAIIIC				
1	JO	JO	$R \longrightarrow Ra$			
2	J1	J1	$LR \longrightarrow LRa$			
3	J2	J2	$R_Gaq_GDP_bg \longrightarrow Ra_Gaq_GDP_bg$			
4	J3	J3	$LR_Gaq_GDP_bg \longrightarrow LRa_Gaq_GDP_bg$			
5	J4	J4	$R + L \longrightarrow LR$			
6	J5	J5	$Ra + L \longrightarrow LRa$			
7	J6	J6	$R_{Gaq_{DP_{bg}} + L \longrightarrow LR_{Gaq_{DP_{bg}}}$			
8	J7	J7	$Ra_Gaq_GDP_bg + L \longrightarrow LRa_Gaq_GDP_bg$			
9	J8	J8	$R + Gaq_GDP_bg \longrightarrow R_Gaq_GDP_bg$			
10	J9	J9	$\mathtt{Ra}+\mathtt{Gaq_GDP_bg}\longrightarrow \mathtt{Ra}_\mathtt{Gaq}_\mathtt{GDP}_\mathtt{bg}$			
11	J10	J10	$\texttt{LRa}+\texttt{Gaq}_\texttt{GDP}_\texttt{bg} \longrightarrow \texttt{LRa}_\texttt{Gaq}_\texttt{GDP}_\texttt{bg}$			
12	J11	J11	$\texttt{LR}+\texttt{Gaq_GDP_bg} \longrightarrow \texttt{LR_Gaq_GDP_bg}$			
13	J12	J12	$\texttt{Ra}_\texttt{Gaq}_\texttt{GDP}_\texttt{bg} \longrightarrow \texttt{GDP} + \texttt{Ra}_\texttt{Gaq0}_\texttt{bg}$			
14	J13	J13	$\texttt{Ra}_\texttt{Gaq0_bg}+\texttt{GTP}\longrightarrow\texttt{Ra}_\texttt{Gaq}_\texttt{GTP}_\texttt{bg}$			
15	J14	J14	$\mathtt{Ra}_\mathtt{Gaq}_\mathtt{GTP}_\mathtt{bg} \longrightarrow \mathtt{Gaq}\mathtt{GTP}+\mathtt{Gbg}+\mathtt{Ra}$			
16	J15	J15	$LRa_Gaq_GDP_bg \longrightarrow GDP + LRa_Gaq0_bg$			
17	J16	J16	$LRa_Gaq0_bg+GTP \longrightarrow LRa_Gaq_GTP_bg$			
18	J17	J17	$LRa_Gaq_GTP_bg \longrightarrow GaqGTP + Gbg + LRa$			
19	J18	J18	$GaqGTP \longrightarrow GaqGDP$			
20	J19	J19	$\texttt{GaqGDP}+\texttt{Gbg}\longrightarrow\texttt{Gaq_GDP_bg}$			
21	J20	J20	${\tt Ra_Gaq_GTP_bg} \longrightarrow {\tt Ra_Gaq_GDP_bg}$			
22	J21	J21	$LRa_Gaq_GTP_bg \longrightarrow LRa_Gaq_GDP_bg$			

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation SBO		
23	J76	J76	$IP3R + Ca \longrightarrow IP3R_Ca$		
24	J77	J77	$ ext{IP3R_Ca} + ext{Ca} \longrightarrow ext{IP3R_2Ca}$		
25	J78	J78	$IP3R_2Ca + Ca \longrightarrow IP3R_3Ca$		
26	J79	J79	$IP3R_3Ca + Ca \longrightarrow IP3R_4Ca$		
27	J80	J 80	$IP3R + IP3 \longrightarrow IP3R_IP3$		
28	J81	J81	${\tt IP3R_IP3+Ca} \longrightarrow {\tt IP3R_Open}$		
29	J87	J87	$\mathtt{CaM}+\mathtt{Ca}\longrightarrow \mathtt{CaM}_{-}\mathtt{Ca}$		
30	J88	J88	$CaM_Ca + Ca \longrightarrow CaM_2Ca$		
31	J89	J89	$CaM_2Ca + Ca \longrightarrow CaM_3Ca$		
32	J90	J 90	$CaM_3Ca + Ca \longrightarrow CaM_4Ca$		
33	J91	J91	$\texttt{CaN}+\texttt{Ca} \longrightarrow \texttt{CaN}_{-}\texttt{Ca}$		
34	J92	J92	$\texttt{CaN_Ca} + \texttt{Ca} \longrightarrow \texttt{CaN_2Ca}$		
35	J93	J93	$\texttt{CaN}_2\texttt{Ca} + \texttt{Ca} \longrightarrow \texttt{CaN}_3\texttt{Ca}$		
36	J94	J94	$\texttt{CaN}_\texttt{3Ca}+\texttt{Ca}\longrightarrow\texttt{CaN}_\texttt{4Ca}$		
37	J95	J95	$\texttt{CaN}_4\texttt{Ca} + \texttt{CaM}_2\texttt{Ca} \longrightarrow \texttt{CaN}_4\texttt{Ca}_\texttt{CaM}_2\texttt{Ca}$		
38	J96	J96	$\texttt{CaN}_4\texttt{Ca} + \texttt{CaM}_3\texttt{Ca} \longrightarrow \texttt{CaN}_4\texttt{Ca}_\texttt{CaM}_3\texttt{Ca}$		
39	J97	J97	$\texttt{CaN}_4\texttt{Ca} + \texttt{CaM}_4\texttt{Ca} \longrightarrow \texttt{CaN}_4\texttt{Ca}_\texttt{CaM}_4\texttt{Ca}$		
40	J163	J163	$\texttt{PLC2_PIP2} + \texttt{Ca} \longrightarrow \texttt{PLC2_Ca_PIP2}$		
41	J164	J164	$\texttt{PLC2_Gq_PIP2} + \texttt{Ca} \longrightarrow \texttt{PLC2_Ca_Gq_PIP2}$		
42	J165	J165	$ t PLC2_PIP2 + extsf{GaqGTP} \longrightarrow extsf{PLC2}_ extsf{Gq}_PIP2$		
43	J166	J166	$PLC2_Ca_PIP2 + GaqGTP \longrightarrow PLC2_Ca_Gq_PIP2$		
44	J167	J167	$ t PLC2_Ca+GaqGTP \longrightarrow PLC2_Ca_Gq$		
45	J168	J168	$PLC2_Ca_PIP2 \longrightarrow IP3 + DAG + PLC2_Ca$		
46	J169	J169	$\texttt{PLC2_Ca_Gq_PIP2} \longrightarrow \texttt{DAG} + \texttt{IP3} + \texttt{PLC2_Ca_Gq}$		
47	J170	J170	$PLC2_Ca + PIP2 \longrightarrow PLC2_Ca_PIP2$		
48	J171	J171	$\texttt{PLC2_Ca_Gq} + \texttt{PIP2} \longrightarrow \texttt{PLC2_Ca_Gq_PIP2}$		
49	J172	J172	$PLC2_Gq_PIP2 \longrightarrow PLC2_PIP2 + GaqGDP$		
50	J173	J173	$\texttt{PLC2_Ca_Gq_PIP2} \longrightarrow \texttt{GaqGDP} + \texttt{PLC2_Ca_PIP2}$		
51	J174	J174	$PLC2_Ca_Gq \longrightarrow GaqGDP + PLC2_Ca$		

N⁰	Id	Name	Reaction Equation SBO			
52	J175	J175	$IP3K + Ca \longrightarrow IP3K_{-}Ca$			
53	J176	J176	$ ext{IP3K_Ca} + ext{Ca} \longrightarrow ext{IP3K_2Ca}$			
54	J177	J177	$IP3K_2Ca + IP3 \longrightarrow IP3K_2Ca_IP3$			
55	J178	J178	$ ext{IP3K_2Ca_IP3} \longrightarrow ext{IP4} + ext{IP3K_2Ca}$			
56	J179	J179	$ ext{IP5P} + ext{IP3} \longrightarrow ext{IP5P}_ ext{IP3}$			
57	J180	J180	$IP5P_IP3 \longrightarrow IP2 + IP5P$			
58	J181	J181	$ ext{CaER} \longrightarrow ext{Ca}$			
59	J182	J182	$\mathtt{SERCA} + \mathtt{Ca} \longrightarrow \mathtt{SERCA}_\mathtt{Ca}$			
60	J183	J183	$\mathtt{SERCA_Ca} + \mathtt{Ca} \longrightarrow \mathtt{SERCA_2Ca}$			
61	J184	J184	$\texttt{SERCA_2Ca} \longrightarrow \texttt{CaER} + \texttt{SERCA_Ca}$			
62	J185	J185	$\mathtt{SERCA}_\mathtt{Ca} \longrightarrow \mathtt{CaER} + \mathtt{SERCA}$			
63	J186	J186	$ extsf{CaER} \longrightarrow extsf{Ca}$			
64	J187	J187	$PMCA + Ca \longrightarrow PMCA_Ca$			
65	J188	J188	$\texttt{PMCA}_\texttt{Ca} \longrightarrow \texttt{Ca}_\texttt{Cleft} + \texttt{PMCA}$			
66	J189	J189	$\texttt{NaCa_Exch} + \texttt{Ca} \longrightarrow \texttt{NaCa_Exch_Ca}$			
67	J190	J190	$NaCa_Exch_Ca + Ca \longrightarrow NaCa_Exch_2Ca$			
68	J191	J191	$\texttt{NaCa_Exch_2Ca} \longrightarrow \texttt{Ca_Cleft} + \texttt{NaCa_Exch_Ca}$			
69	J192	J192	$\texttt{NaCa_Exch_Ca} \longrightarrow \texttt{Ca_Cleft} + \texttt{NaCa_Exch}$			
70	J193	J193	$\texttt{Ca_Cleft} \longrightarrow \texttt{Ca}$			
71	re96		$\texttt{iCaAMPAR} + \texttt{iCaNMDAR} \longrightarrow \texttt{CaPSD}$			
72	re97		$ ext{CaPSD} \longrightarrow ext{Ca}$			

6.1 Reaction J0

This is an irreversible reaction of one reactant forming one product.

Name J0

Reaction equation

$$R \longrightarrow Ra$$
 (1)

Reactant

Table 6	: Properties of each reactant.			
	Id	Name	SBO	
	R	R		

Product

Table 7	7: Properties of each product.			
	Id	Name	SBO	
	Ra	Ra		

Kinetic Law

Derived unit contains undeclared units

 $v_1 = J0_k 1 \cdot [R] - J0_k 2 \cdot [Ra]$ ⁽²⁾

6.2 Reaction J1

This is an irreversible reaction of one reactant forming one product.

Name J1

Reaction equation

$$LR \longrightarrow LRa$$
 (3)

Reactant

Produced by SBML2LATEX

Table 8: Properties of each reactant.

Id	Name	SBO
LR	LR	

Table	9: Prop	perties of	each pi	oduct.
	Id	Name	SBO	
	LRa	LRa		-

Kinetic Law

Derived unit contains undeclared units

$$v_2 = J1_k1 \cdot [LR] - J1_k2 \cdot [LRa]$$
⁽⁴⁾

6.3 Reaction J2

This is an irreversible reaction of one reactant forming one product.

Name J2

Reaction equation

$$R_{-}Gaq_{-}GDP_{-}bg \longrightarrow Ra_{-}Gaq_{-}GDP_{-}bg$$
(5)

Reactant

Table 10: Properties of each reactant.			
Id Name SBO			
R_Gaq_GDP_bg	R_Gaq_GDP_bg		

Product

Id	Name	SBO
Ra_Gaq_GDP_bg	Ra_Gaq_GDP_bg	

Derived unit contains undeclared units

$$v_3 = J2_k1 \cdot [R_Gaq_GDP_bg] - J2_k2 \cdot [Ra_Gaq_GDP_bg]$$
(6)

6.4 Reaction J3

This is an irreversible reaction of one reactant forming one product.

Name J3

Reaction equation

$$LR_Gaq_GDP_bg \longrightarrow LRa_Gaq_GDP_bg$$
(7)

Reactant

Table 12: Prop	perties of each reacta	int.
Id	Name	SBO
LR_Gaq_GDP_bg	LR_Gaq_GDP_bg	

Product

Table 13: Properties of each product.			
Id	d Name SBO		
LRa_Gaq_GDP_bg	LRa_Gaq_GDP_bg		

Kinetic Law

Derived unit contains undeclared units

$$v_4 = J3_k1 \cdot [LR_Gaq_GDP_bg] - J3_k2 \cdot [LRa_Gaq_GDP_bg]$$

(8)

6.5 Reaction J4

This is an irreversible reaction of two reactants forming one product.

Name J4

Reaction equation

$$R + L \longrightarrow LR \tag{9}$$

Reactants

Table 14	l: Pro	operties o	of each i	reactant.
	Id	Name	SBO	
	R	R		
	L	L		

Product

Table 1	5: Pro	operties o	of each product.
	Id	Name	SBO
	LR	LR	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = J4_k1 \cdot [R] \cdot [L] - J4_k2 \cdot [LR]$$
⁽¹⁰⁾

6.6 Reaction J5

This is an irreversible reaction of two reactants forming one product.

Name J5

Reaction equation

$$Ra + L \longrightarrow LRa$$
 (11)

Reactants

Produced by SBML2LATEX

Table 16: Properties of each reactant.

Id	Name	SBO
Ra	Ra	_
L	L	

Table 1	17: Properties of each product			
	Id	Name	SBO	
	LRa	LRa		

Kinetic Law

Derived unit contains undeclared units

$$v_6 = J5_k1 \cdot [Ra] \cdot [L] - J5_k2 \cdot [LRa]$$
(12)

6.7 Reaction J6

This is an irreversible reaction of two reactants forming one product.

Name J6

Reaction equation

$$R_{Gaq_{DP_{bg}} + L \longrightarrow LR_{Gaq_{DP_{bg}}}$$
(13)

Reactants

Table 18: Properties of each reactant.			
Id	Name	SBO	
R_Gaq_GDP_bg L	R_Gaq_GDP_bg L		

Product

Table 19: Properties of each product.			
Id	Name	SBO	
LR_Gaq_GDP_bg	LR_Gaq_GDP_bg		

Derived unit contains undeclared units

$$v_7 = J6_k1 \cdot [R_Gaq_GDP_bg] \cdot [L] - J6_k2 \cdot [LR_Gaq_GDP_bg]$$
(14)

6.8 Reaction J7

This is an irreversible reaction of two reactants forming one product.

Name J7

Reaction equation

$$Ra_Gaq_GDP_bg + L \longrightarrow LRa_Gaq_GDP_bg$$
(15)

Reactants

Table 20: Properties of each reactant.			
Id	Name	SBO	
Ra_Gaq_GDP_bg L	Ra_Gaq_GDP_bg L		

Product

Table 21: Properties of each product.			
Id	Name	SBO	
LRa_Gaq_GDP_bg	LRa_Gaq_GDP_bg		

Kinetic Law

Derived unit contains undeclared units

$$v_8 = J7_k1 \cdot [Ra_Gaq_GDP_bg] \cdot [L] - J7_k2 \cdot [LRa_Gaq_GDP_bg]$$
(16)

6.9 Reaction J8

This is an irreversible reaction of two reactants forming one product.

Name J8

Reaction equation

$$R + Gaq_GDP_bg \longrightarrow R_Gaq_GDP_bg$$
(17)

Reactants

Table 22: Properties of each reactant.			
Id	Name	SBO	
R	R		
Gaq_GDP_bg	Gaq_GDP_bg		

Product

Table 23: Properties of each product.			
Id	Name	SBO	
R_Gaq_GDP_bg	R_Gaq_GDP_bg		

Kinetic Law

Derived unit contains undeclared units

$$v_9 = J8_k1 \cdot [R] \cdot [Gaq_GDP_bg] - J8_k2 \cdot [R_Gaq_GDP_bg]$$
(18)

6.10 Reaction J9

This is an irreversible reaction of two reactants forming one product.

Name J9

Reaction equation

$$Ra + Gaq_GDP_bg \longrightarrow Ra_Gaq_GDP_bg$$
(19)

Reactants

Produced by SBML2ATEX

Table 24: Properties of each reactant.			
Id	Name	SBO	
Ra	Ra		
Gaq_GDP_bg	Gaq_GDP_bg		

Table 25: Properties of each product.			
Id	Name	SBO	
Ra_Gaq_GDP_bg	Ra_Gaq_GDP_bg		

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = J9_k1 \cdot [Ra] \cdot [Gaq_GDP_bg] - J9_k2 \cdot [Ra_Gaq_GDP_bg]$$
(20)

6.11 Reaction J10

This is an irreversible reaction of two reactants forming one product.

Name J10

Reaction equation

$$LRa + Gaq_GDP_bg \longrightarrow LRa_Gaq_GDP_bg$$
(21)

Reactants

Table 26: Properties of each reactant.			
Id	Name	SBO	
LRa	LRa		
Gaq_GDP_bg	Gaq_GDP_bg		

Product

Id	Name	SBO
LRa_Gaq_GDP_bg	LRa_Gaq_GDP_bg	

Derived unit contains undeclared units

$$v_{11} = J10_k1 \cdot [LRa] \cdot [Gaq_GDP_bg] - J10_k2 \cdot [LRa_Gaq_GDP_bg]$$
(22)

6.12 Reaction J11

This is an irreversible reaction of two reactants forming one product.

Name J11

Reaction equation

$$LR + Gaq_GDP_bg \longrightarrow LR_Gaq_GDP_bg$$
(23)

Reactants

Table 28: Properties of each reactant.		
Id	Name	SBO
LR	LR	
Gaq_GDP_bg	Gaq_GDP_bg	

Product

Table 29: Properties of each product.		
Id	Name	SBO
LR_Gaq_GDP_bg	LR_Gaq_GDP_bg	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = J11_k1 \cdot [LR] \cdot [Gaq_GDP_bg] - J11_k2 \cdot [LR_Gaq_GDP_bg]$$
(24)

6.13 Reaction J12

This is an irreversible reaction of one reactant forming two products.

Name J12

Reaction equation

$$Ra_Gaq_GDP_bg \longrightarrow GDP + Ra_Gaq0_bg$$
(25)

Reactant

Table 30: Properties of each reactant.		
Id	Name	SBO
Ra_Gaq_GDP_bg	Ra_Gaq_GDP_bg	

Products

Table 31: Properties of each product.		
Id	Name	SBO
GDP	GDP	
Ra_Gaq0_bg	Ra_Gaq0_bg	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = J12_k1 \cdot [Ra_Gaq_GDP_bg] - J12_k2 \cdot [GDP] \cdot [Ra_Gaq0_bg]$$
(26)

6.14 Reaction J13

This is an irreversible reaction of two reactants forming one product.

Name J13

Reaction equation

$$Ra_Gaq0_bg + GTP \longrightarrow Ra_Gaq_GTP_bg$$
(27)

Reactants

Table 32: Properties of each reactant.		
Id	Name	SBO
Ra_Gaq0_bg GTP	Ra_Gaq0_bg GTP	

Table 33: Properties of each product.		
Id	Name	SBO
Ra_Gaq_GTP_bg	Ra_Gaq_GTP_bg	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = J13_k1 \cdot [Ra_Gaq0_bg] \cdot [GTP] - J13_k2 \cdot [Ra_Gaq_GTP_bg]$$
(28)

6.15 Reaction J14

This is an irreversible reaction of one reactant forming three products.

Name J14

Reaction equation

$$Ra_Gaq_GTP_bg \longrightarrow GaqGTP + Gbg + Ra$$
(29)

Reactant

Table 34: Properties of each reactant.		
Id Name SBC		SBO
Ra_Gaq_GTP_bg	Ra_Gaq_GTP_bg	

Products

Table 35: Properties of each product.

Id	Name	SBO
GaqGTP Gbg	GaqGTP Gbg	
Ra	Ra	

Derived unit contains undeclared units

$$v_{15} = J14_k1 \cdot [Ra_Gaq_GTP_bg] - J14_k2 \cdot [GaqGTP] \cdot [Gbg] \cdot [Ra]$$
(30)

6.16 Reaction J15

This is an irreversible reaction of one reactant forming two products.

Name J15

Reaction equation

$$LRa_Gaq_GDP_bg \longrightarrow GDP + LRa_Gaq0_bg$$
(31)

Reactant

Table 36: Properties of each reactant.		
Id	Name	SBO
LRa_Gaq_GDP_b	og LRa_Gaq_GDP.	_bg

Products

Table 37: Properties of each product.		
Id	Name	SBO
GDP	GDP	
LRa_Gaq0_bg	LRa_Gaq0_bg	

Derived unit contains undeclared units

$$v_{16} = J15_k1 \cdot [LRa_Gaq_GDP_bg] - J15_k2 \cdot [GDP] \cdot [LRa_Gaq0_bg]$$
(32)

6.17 Reaction J16

This is an irreversible reaction of two reactants forming one product.

Name J16

Reaction equation

$$LRa_Gaq0_bg+GTP \longrightarrow LRa_Gaq_GTP_bg$$
(33)

Reactants

Table 38: Properties of each reactant.		
Id	Name	SBO
LRa_Gaq0_bg GTP	LRa_Gaq0_bg GTP	

Product

Table 39: Properties of each product.		
Id	Name	SBO
LRa_Gaq_GTP_bg	LRa_Gaq_GTP_bg	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = J16_k1 \cdot [LRa_Gaq0_bg] \cdot [GTP] - J16_k2 \cdot [LRa_Gaq_GTP_bg]$$
(34)

6.18 Reaction J17

This is an irreversible reaction of one reactant forming three products.

Name J17

Reaction equation

$$LRa_Gaq_GTP_bg \longrightarrow GaqGTP + Gbg + LRa$$
(35)

Reactant

Table 40: Properties of each reactant.			
Id	Name	SBO	
LRa_Gaq_GTP_bg	LRa_Gaq_GTP_bg		

Products

Table 41: Properties of each product.			
	Id	Name	SBO
	GaqGTP	GaqGTP	
	Gbg	Gbg	
	LRa	LRa	

Kinetic Law

Derived unit contains undeclared units

 $v_{18} = \texttt{J17_k1} \cdot [\texttt{LRa_Gaq_GTP_bg}] - \texttt{J17_k2} \cdot [\texttt{GaqGTP}] \cdot [\texttt{Gbg}] \cdot [\texttt{LRa}] \tag{36}$

6.19 Reaction J18

This is an irreversible reaction of one reactant forming one product.

Name J18

Reaction equation

$$GaqGTP \longrightarrow GaqGDP \tag{37}$$

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
GaqGTP	GaqGTP	

Table 43: Properties of each produc			
	Id	Name	SBO
	GaqGDP	GaqGDP	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = J18_k1 \cdot [GaqGTP] - J18_k2 \cdot [GaqGDP]$$
(38)

6.20 Reaction J19

This is an irreversible reaction of two reactants forming one product.

Name J19

Reaction equation

$$GaqGDP + Gbg \longrightarrow Gaq_GDP_bg$$
(39)

Reactants

Table 44: Properties of each reactant.			
	Id	Name	SBO
	GaqGDP	GaqGDP	
	Gbg	Gbg	

Product

Table 45: Properties of each product.			
Id Name SBO			
Gaq_GDP_bg	Gaq_GDP_bg		

Derived unit contains undeclared units

$$v_{20} = J19_k1 \cdot [GaqGDP] \cdot [Gbg] - J19_k2 \cdot [Gaq_GDP_bg]$$

$$\tag{40}$$

6.21 Reaction J20

This is an irreversible reaction of one reactant forming one product.

Name J20

Reaction equation

$$Ra_Gaq_GTP_bg \longrightarrow Ra_Gaq_GDP_bg$$
(41)

Reactant

Table 46: Properties of each reactant.		
Id	Name	SBO
Ra_Gaq_GTP_bg	Ra_Gaq_GTP_bg	

Product

Table 47: Properties of each product.			
Id Name SBO			
Ra_Gaq_GDP_bg	Ra_Gaq_GDP_bg		

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \frac{\text{J20}_{\text{Max}} \cdot [\text{Ra}_{\text{Gaq}_{\text{GTP}_{\text{bg}}}] \cdot [\text{RGS}]}{\text{J20}_{\text{Km1}} + [\text{RGS}]}$$
(42)

Produced by SBML2ATEX

6.22 Reaction J21

This is an irreversible reaction of one reactant forming one product.

Name J21

Reaction equation

$$LRa_Gaq_GTP_bg \longrightarrow LRa_Gaq_GDP_bg$$
(43)

Reactant

Table 48: Properties of each reactant.			
Id Name SBO			
LRa_Gaq_GTP_bg	LRa_Gaq_GTP_bg		

Product

Table 49: Properties of each product.		
Id Name SBO		
LRa_Gaq_GDP_bg	LRa_Gaq_GDP_bg	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \frac{J21_Vmax \cdot [LRa_Gaq_GTP_bg] \cdot [RGS]}{J21_Km1 + [RGS]}$$
(44)

6.23 Reaction J76

This is an irreversible reaction of two reactants forming one product.

Name J76

Reaction equation

$$IP3R + Ca \longrightarrow IP3R_Ca$$
(45)

Reactants

Produced by SBML2LATEX

Table 50: Properties of each reactant.

Id	Name	SBO
IP3R	IP3R	
Ca	Ca	

Table 51: Properties of each produc				ict.
	Id	Name	SBO	
	IP3R_Ca	IP3R_Ca		

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = J76_k1 \cdot [IP3R] \cdot [Ca] - J76_k2 \cdot [IP3R_Ca]$$

$$(46)$$

6.24 Reaction J77

This is an irreversible reaction of two reactants forming one product.

Name J77

Reaction equation

$$IP3R_Ca + Ca \longrightarrow IP3R_2Ca$$
(47)

Reactants

Tał	Table 52: Properties of each reactant.				
	Id	Name	SBO		
	IP3R_Ca	IP3R_Ca			
	Ca	Ca			

Product

Table 53: Properties	of each	product.
----------------------	---------	----------

Id	Name	SBO
IP3R_2Ca	IP3R_2Ca	

Derived unit contains undeclared units

$$v_{24} = J77_k1 \cdot [IP3R_Ca] \cdot [Ca] - J77_k2 \cdot [IP3R_2Ca]$$

$$\tag{48}$$

6.25 Reaction J78

This is an irreversible reaction of two reactants forming one product.

Name J78

Reaction equation

$$IP3R_2Ca + Ca \longrightarrow IP3R_3Ca \tag{49}$$

Reactants

Table 54: Properties of each reactant.				
	Id	Name	SBO	
	IP3R_2Ca	IP3R_2Ca		
	Ca	Ca		

Product

Та	Table 55: Properties of each product.		
	Id	Name	SBO
	IP3R_3Ca	IP3R_3Ca	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = J78_k1 \cdot [IP3R_2Ca] \cdot [Ca] - J78_k2 \cdot [IP3R_3Ca]$$
 (50)

6.26 Reaction J79

This is an irreversible reaction of two reactants forming one product.

Name J79

Reaction equation

$$IP3R_{-}3Ca + Ca \longrightarrow IP3R_{-}4Ca$$
(51)

Reactants

Τa	Table 56: Properties of each reactant.				
	Id	Name	SBO		
	IP3R_3Ca	IP3R_3Ca			
	Ca	Ca			

Product

Table 57: Properties of each product.				
	Id	Name	SBO	
	IP3R_4Ca	IP3R_4Ca		

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = J79_k1 \cdot [IP3R_3Ca] \cdot [Ca] - J79_k2 \cdot [IP3R_4Ca]$$
 (52)

6.27 Reaction J80

This is an irreversible reaction of two reactants forming one product.

Name J80

Reaction equation

$$IP3R + IP3 \longrightarrow IP3R_{-}IP3 \tag{53}$$

Reactants

Table 58: Properties of each reactant.

Id	Name	SBO
IP3R	IP3R	
IP3	IP3	

Table 59: Properties of each product.			
	Id	Name	SBO
	IP3R_IP3	IP3R_IP3	

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = J80_k1 \cdot [IP3R] \cdot [IP3] - J80_k2 \cdot [IP3R_IP3]$$
(54)

6.28 Reaction J81

This is an irreversible reaction of two reactants forming one product.

Name J81

Reaction equation

$$IP3R_{-}IP3 + Ca \longrightarrow IP3R_{-}Open$$
(55)

Reactants

Та	Table 60: Properties of each reactant.				
	Id	Name	SBO		
	IP3R_IP3	IP3R_IP3			
	Ca	Ca			

Product

,	Table 61: Properties of each product.			
	Id	Name	SBO	
	IP3R_Open	IP3R_Open		

Derived unit contains undeclared units

$$v_{28} = J81_k1 \cdot [IP3R_IP3] \cdot [Ca] - J81_k2 \cdot [IP3R_Open]$$
(56)

6.29 Reaction J87

This is an irreversible reaction of two reactants forming one product.

Name J87

Reaction equation

$$CaM + Ca \longrightarrow CaM_Ca$$
 (57)

Reactants

Table 62: Properties of each reactant.				
	Id	Name	SBO	
		CaM		
	Ca	Ca		

Product

Table 63: Properties of each product.					
	Id	Name	SBO		
	CaM_Ca	CaM_Ca			

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = J87_k1 \cdot [CaM] \cdot [Ca] - J87_k2 \cdot [CaM_Ca]$$
(58)

Produced by SBML2ATEX

6.30 Reaction J88

This is an irreversible reaction of two reactants forming one product.

Name J88

Reaction equation

$$CaM_Ca + Ca \longrightarrow CaM_2Ca$$
 (59)

Reactants

Table 64: Properties of each reactant.					
	Id	Name	SBO		
	CaM_Ca	CaM_Ca			
	Ca	Ca			

Product

Table 65: Properties of each product.					
	Id	Name	SBO		
	CaM_2Ca	CaM_2Ca			

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = \mathsf{J88_k1} \cdot [\mathsf{CaM_Ca}] \cdot [\mathsf{Ca}] - \mathsf{J88_k2} \cdot [\mathsf{CaM_2Ca}]$$
(60)

6.31 Reaction J89

This is an irreversible reaction of two reactants forming one product.

Name J89

Reaction equation

$$CaM_2Ca + Ca \longrightarrow CaM_3Ca$$
(61)

Reactants

Table 66: Properties of each reactant.

Id	Name	SBO
CaM_2Ca	CaM_2Ca	
Ca	Ca	

Ta	Table 67: Properties of each product.			
	Id	Name	SBO	
	CaM_3Ca	CaM_3Ca		

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \mathsf{J89_k1} \cdot [\mathsf{CaM_2Ca}] \cdot [\mathsf{Ca}] - \mathsf{J89_k2} \cdot [\mathsf{CaM_3Ca}]$$
(62)

6.32 Reaction J90

This is an irreversible reaction of two reactants forming one product.

Name J90

Reaction equation

$$CaM_3Ca + Ca \longrightarrow CaM_4Ca$$
 (63)

Reactants

Table 68: Properties of each reactant.			
	Id	Name	SBO
	CaM_3Ca	CaM_3Ca	
	Ca	Ca	

Product

Table 69: Properties of each product.

Id	Name	SBO
CaM_4Ca	CaM_4Ca	

Derived unit contains undeclared units

$$v_{32} = J90_k1 \cdot [CaM_3Ca] \cdot [Ca] - J90_k2 \cdot [CaM_4Ca]$$
(64)

6.33 Reaction J91

This is an irreversible reaction of two reactants forming one product.

Name J91

Reaction equation

$$\operatorname{CaN} + \operatorname{Ca} \longrightarrow \operatorname{CaN}_{-}\operatorname{Ca}$$
 (65)

Reactants

Table 70: Properties of each reactant.				
	Id	Name	SBO	
	CaN	CaN		
	Ca	Ca		

Product

Tab	le 71: Prop	perties of ea	ch product.
	Id	Name	SBO
	CaN_Ca	CaN_Ca	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = J91_k1 \cdot [CaN] \cdot [Ca] - J91_k2 \cdot [CaN_Ca]$$
(66)

6.34 Reaction J92

This is an irreversible reaction of two reactants forming one product.

Name J92

Reaction equation

$$CaN_{-}Ca + Ca \longrightarrow CaN_{-}2Ca \tag{67}$$

Reactants

Tabl	e 72: Prop	perties of ea	ch reactant.
	Id	Name	SBO
	CaN_Ca	CaN_Ca	
	Ca	Ca	

Product

Table 73: Properties of each product.			
	Id	Name	SBO
	CaN_2Ca	CaN_2Ca	

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = J92_k1 \cdot [CaN_Ca] \cdot [Ca] - J92_k2 \cdot [CaN_2Ca]$$
(68)

6.35 Reaction J93

This is an irreversible reaction of two reactants forming one product.

Name J93

Reaction equation

$$CaN_2Ca + Ca \longrightarrow CaN_3Ca \tag{69}$$

Reactants

Produced by SBML2ATEX

Table 74: Properties of each reactant.

Id	Name	SBO
CaN_2Ca	CaN_2Ca	
Ca	Ca	

Table 75: Properties of each product.			
	Id	Name	SBO
	CaN_3Ca	CaN_3Ca	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = J93_k1 \cdot [CaN_2Ca] \cdot [Ca] - J93_k2 \cdot [CaN_3Ca]$$

$$(70)$$

6.36 Reaction J94

This is an irreversible reaction of two reactants forming one product.

Name J94

Reaction equation

$$CaN_{-}3Ca + Ca \longrightarrow CaN_{-}4Ca$$
(71)

Reactants

Tal	ole 76: Prop	erties of eac	h reactant.
	Id	Name	SBO
	CaN_3Ca Ca	CaN_3Ca Ca	

Product

Table 77: Properties of each product.

Id	Name	SBO
CaN_4Ca	CaN_4Ca	

Derived unit contains undeclared units

$$v_{36} = J94_k1 \cdot [CaN_3Ca] \cdot [Ca] - J94_k2 \cdot [CaN_4Ca]$$
(72)

6.37 Reaction J95

This is an irreversible reaction of two reactants forming one product.

Name J95

Reaction equation

$$CaN_4Ca + CaM_2Ca \longrightarrow CaN_4Ca_CaM_2Ca$$
(73)

Reactants

Ta	Table 78: Properties of each reactant.			
	Id	Name	SBO	
	CaN_4Ca	CaN_4Ca		
	CaM_2Ca	CaM_2Ca		

Product

Table 79: Properties of each product.			
Id	Name	SBO	
CaN_4Ca_CaM_2Ca	CaN_4Ca_CaM_2Ca		

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = J95_k1 \cdot [CaN_4Ca] \cdot [CaM_2Ca] - J95_k2 \cdot [CaN_4Ca_CaM_2Ca]$$
 (74)

6.38 Reaction J96

This is an irreversible reaction of two reactants forming one product.

Name J96

Reaction equation

$$CaN_4Ca + CaM_3Ca \longrightarrow CaN_4Ca_CaM_3Ca$$
(75)

Reactants

Та	Table 80: Properties of each reactant.			
	Id	Name	SBO	
	CaN_4Ca	CaN_4Ca		
	CaM_3Ca	CaM_3Ca		

Product

Table 81: Properties of each product.			
Id	Name	SBO	
CaN_4Ca_CaM_3Ca	CaN_4Ca_CaM_3Ca		

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = J96_k1 \cdot [CaN_4Ca] \cdot [CaM_3Ca] - J96_k2 \cdot [CaN_4Ca_CaM_3Ca]$$
(76)

6.39 Reaction J97

This is an irreversible reaction of two reactants forming one product.

Name J97

Reaction equation

$$CaN_4Ca + CaM_4Ca \longrightarrow CaN_4Ca_CaM_4Ca$$
(77)

Reactants

Produced by SBML2ATEX

Table 82: Properties of each reactant.

Id	Name	SBO
CaN_4Ca	CaN_4Ca	
CaM_4Ca	CaM_4Ca	

Table 83: Properties of each product.			
Id	Name	SBO	
CaN_4Ca_CaM_4Ca	CaN_4Ca_CaM_4Ca		

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = J97_k1 \cdot [CaN_4Ca] \cdot [CaM_4Ca] - J97_k2 \cdot [CaN_4Ca_CaM_4Ca]$$
(78)

6.40 Reaction J163

This is an irreversible reaction of two reactants forming one product.

Name J163

Reaction equation

$$PLC2_PIP2 + Ca \longrightarrow PLC2_Ca_PIP2$$
(79)

Reactants

Table 84: Properties of each reactant.			
Id	Name	SBO	
PLC2_PIP2	PLC2_PIP2		
Ca	Ca		

Product

Table 85: Properties of each product.			
Id	Name	SBO	

PLC2_Ca_PIP2 PLC2_Ca_PIP2

Kinetic	Law

Derived unit contains undeclared units

$$v_{40} = J163_k1 \cdot [PLC2_PIP2] \cdot [Ca] - J163_k2 \cdot [PLC2_Ca_PIP2]$$
(80)

6.41 Reaction J164

This is an irreversible reaction of two reactants forming one product.

Name J164

Reaction equation

$$PLC2_Gq_PIP2 + Ca \longrightarrow PLC2_Ca_Gq_PIP2$$
(81)

Reactants

Table 86: Properties of each reactant.			
Id	Name	SBO	
PLC2_Gq_PIP2 Ca	PLC2_Gq_PIP2 Ca		

Product

Table 87: Properties of each product.			
Id	Name	SBO	
PLC2_Ca_Gq_PIP2	PLC2_Ca_Gq_PIP2		

Kinetic Law

Derived unit contains undeclared units

 $v_{41} = J164_k1 \cdot [PLC2_Gq_PIP2] \cdot [Ca] - J164_k2 \cdot [PLC2_Ca_Gq_PIP2]$ (82)

6.42 Reaction J165

This is an irreversible reaction of two reactants forming one product.

Name J165

Reaction equation

$$PLC2_PIP2 + GaqGTP \longrightarrow PLC2_Gq_PIP2$$
(83)

Reactants

Table 88: Properties of each reactant.			
Id	Name	SBO	
PLC2_PIP2	PLC2_PIP2		
GaqGTP	GaqGTP		

Product

Table 89: Properties of each product.			
Id Name SBO			
PLC2_Gq_PIP2	PLC2_Gq_PIP2		

Kinetic Law

Derived unit contains undeclared units

$$v_{42} = J165_k1 \cdot [PLC2_PIP2] \cdot [GaqGTP] - J165_k2 \cdot [PLC2_Gq_PIP2]$$
(84)

6.43 Reaction J166

This is an irreversible reaction of two reactants forming one product.

Name J166

Reaction equation

$$PLC2_Ca_PIP2 + GaqGTP \longrightarrow PLC2_Ca_Gq_PIP2$$
(85)

Reactants

Produced by SBML2ATEX

Table 90: Properties of each reactant.		
Id	Name	SBO
	PLC2_Ca_PIP2	
GaqGTP	GaqGTP	

Table 91: Properties of each product.			
Id Name SBO			
PLC2_Ca_Gq_PIP2	PLC2_Ca_Gq_PIP2		

Kinetic Law

Derived unit contains undeclared units

 $v_{43} = \texttt{J166_k1} \cdot [\texttt{PLC2_Ca_PIP2}] \cdot [\texttt{GaqGTP}] - \texttt{J166_k2} \cdot [\texttt{PLC2_Ca_Gq_PIP2}]$ (86)

6.44 Reaction J167

This is an irreversible reaction of two reactants forming one product.

Name J167

Reaction equation

$$PLC2_Ca + GaqGTP \longrightarrow PLC2_Ca_Gq$$
(87)

Reactants

Table 92: Properties of each reactant.			
	Id	Name	SBO
	PLC2_Ca	PLC2_Ca	
	GaqGTP	GaqGTP	

Product

Table 93: Properties of each product.			
Id Name SBO			
PLC2_Ca_Gq	PLC2_Ca_Gq		

Derived unit contains undeclared units

$$v_{44} = J167_k1 \cdot [PLC2_Ca] \cdot [GaqGTP] - J167_k2 \cdot [PLC2_Ca_Gq]$$
(88)

6.45 Reaction J168

This is an irreversible reaction of one reactant forming three products.

Name J168

Reaction equation

$$PLC2_Ca_PIP2 \longrightarrow IP3 + DAG + PLC2_Ca$$
(89)

Reactant

Table 94: Properties of each reactant.		
Id Name SBO		
PLC2_Ca_PIP2	PLC2_Ca_PIP2	

Products

Table 95: Properties of each product.			
	Id	Name	SBO
	IP3	IP3	
	DAG	DAG	
	$PLC2_Ca$	PLC2_Ca	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = \texttt{J168_k1} \cdot [\texttt{PLC2_Ca_PIP2}] - \texttt{J168_k2} \cdot [\texttt{IP3}] \cdot [\texttt{DAG}] \cdot [\texttt{PLC2_Ca}]$$
(90)

6.46 Reaction J169

This is an irreversible reaction of one reactant forming three products.

Name J169

Reaction equation

$$PLC2_Ca_Gq_PIP2 \longrightarrow DAG + IP3 + PLC2_Ca_Gq$$
(91)

Reactant

Table 96: Properties of each reactant.			
Id Name SBO			
PLC2_Ca_Gq_PIP2	PLC2_Ca_Gq_PIP2		

Products

Table 97: Properties of each product.		
Id	Name	SBO
DAG	DAG	
IP3	IP3	
PLC2_Ca_Gq	PLC2_Ca_Gq	

Kinetic Law

Derived unit contains undeclared units

 $v_{46} = \texttt{J169_k1} \cdot [\texttt{PLC2_Ca_Gq_PIP2}] - \texttt{J169_k2} \cdot [\texttt{DAG}] \cdot [\texttt{IP3}] \cdot [\texttt{PLC2_Ca_Gq}]$ (92)

6.47 Reaction J170

This is an irreversible reaction of two reactants forming one product.

Name J170

Reaction equation

$$PLC2_Ca + PIP2 \longrightarrow PLC2_Ca_PIP2$$
(93)

Reactants

Table 98: Properties of each reactant.			
	Id	Name	SBO
	PLC2_Ca	PLC2_Ca	

PIP2

PIP2

Product

Table 99: Properties of each product.			
Id Name SBO			
PLC2_Ca_PIP2	PLC2_Ca_PIP2		

Kinetic Law

Derived unit contains undeclared units

$$v_{47} = J170_k1 \cdot [PLC2_Ca] \cdot [PIP2] - J170_k2 \cdot [PLC2_Ca_PIP2]$$
 (94)

6.48 Reaction J171

This is an irreversible reaction of two reactants forming one product.

Name J171

Reaction equation

$$PLC2_Ca_Gq + PIP2 \longrightarrow PLC2_Ca_Gq_PIP2$$
(95)

Reactants

Table 100: Properties of each reactant.			
Id	Name	SBO	
PLC2_Ca_Gq PIP2	PLC2_Ca_Gq PIP2		

Table 101: Properties of each product.		
Id Name SBO		
PLC2_Ca_Gq_PIP2	PLC2_Ca_Gq_PIP2	

Kinetic Law

Derived unit contains undeclared units

$$v_{48} = J171_k1 \cdot [PLC2_Ca_Gq] \cdot [PIP2] - J171_k2 \cdot [PLC2_Ca_Gq_PIP2]$$
(96)

6.49 Reaction J172

This is an irreversible reaction of one reactant forming two products.

Name J172

Reaction equation

$$PLC2_Gq_PIP2 \longrightarrow PLC2_PIP2 + GaqGDP$$
(97)

Reactant

Table 102: Properties of each reactant.			
Id Name SBC			
PLC2_Gq_PIP2	PLC2_Gq_PIP2		

Products

Table 103: Properties of each product.				
	Id Name SBO			
-	PLC2_PIP2	PLC2_PIP2		
	GaqGDP	GaqGDP		

Derived unit contains undeclared units

$$v_{49} = J172_k1 \cdot [PLC2_Gq_PIP2] - J172_k2 \cdot [PLC2_PIP2] \cdot [GaqGDP]$$
(98)

6.50 Reaction J173

This is an irreversible reaction of one reactant forming two products.

Name J173

Reaction equation

$$PLC2_Ca_Gq_PIP2 \longrightarrow GaqGDP + PLC2_Ca_PIP2$$
(99)

Reactant

Table 104: Properties of each reactant.		
Id Name SBO		
PLC2_Ca_Gq_PIP2	PLC2_Ca_Gq_PIP2	

Products

Table 105: Properties of each product.			
Id Name SBO			
GaqGDP PLC2_Ca_PIP2	GaqGDP PLC2_Ca_PIP2		

Kinetic Law

Derived unit contains undeclared units

 $v_{50} = \texttt{J173_k1} \cdot [\texttt{PLC2_Ca_Gq_PIP2}] - \texttt{J173_k2} \cdot [\texttt{GaqGDP}] \cdot [\texttt{PLC2_Ca_PIP2}] \quad (100)$

6.51 Reaction J174

This is an irreversible reaction of one reactant forming two products.

Name J174

Reaction equation

$$PLC2_Ca_Gq \longrightarrow GaqGDP + PLC2_Ca$$
(101)

Reactant

Table 106: Properties of each reactant.			
Id Name SBO			
PLC2_Ca_Gq	PLC2_Ca_Gq		

Products

Table 107:	Properties of e	ach product.
Id	Name	SBO

GaqGDP	GaqGDP
PLC2_Ca	PLC2_Ca

Kinetic Law

Derived unit contains undeclared units

$$v_{51} = J174_k1 \cdot [PLC2_Ca_Gq] - J174_k2 \cdot [GaqGDP] \cdot [PLC2_Ca]$$
(102)

6.52 Reaction J175

This is an irreversible reaction of two reactants forming one product.

Name J175

Reaction equation

$$IP3K + Ca \longrightarrow IP3K_Ca$$
 (103)

Reactants

Table 108: Properties of each reactant.

Id	Name	SBO
IP3K	IP3K	
Ca	Ca	

Table 109: Properties of each product.			
	Id	Name	SBO
	IP3K_Ca	IP3K_Ca	

Kinetic Law

Derived unit contains undeclared units

$$v_{52} = J175_k1 \cdot [IP3K] \cdot [Ca] - J175_k2 \cdot [IP3K_Ca]$$

$$(104)$$

6.53 Reaction J176

This is an irreversible reaction of two reactants forming one product.

Name J176

Reaction equation

$$IP3K_Ca + Ca \longrightarrow IP3K_2Ca$$
(105)

Reactants

Table 110: Properties of each reactant.				
	Id	Name	SBO	
		IP3K_Ca		
	IP3K_Ca Ca	IP3K₋Ca Ca		

Product

Table 111:	Properties	of each	product.

Id	Name	SBO
IP3K_2Ca	IP3K_2Ca	

Derived unit contains undeclared units

$$v_{53} = J176_k1 \cdot [IP3K_Ca] \cdot [Ca] - J176_k2 \cdot [IP3K_2Ca]$$
 (106)

6.54 Reaction J177

This is an irreversible reaction of two reactants forming one product.

Name J177

Reaction equation

$$IP3K_2Ca + IP3 \longrightarrow IP3K_2Ca_IP3 \tag{107}$$

Reactants

Та	Table 112: Properties of each reactant.				
	Id	Name	SBO		
	IP3K_2Ca				
	IP3	IP3			

Product

Table 113: Properties of each product.			
Id Name SBO			
IP3K_2Ca_IP3	IP3K_2Ca_IP3		

Kinetic Law

Derived unit contains undeclared units

$$v_{54} = J177_k1 \cdot [IP3K_2Ca] \cdot [IP3] - J177_k2 \cdot [IP3K_2Ca_IP3]$$
(108)

6.55 Reaction J178

This is an irreversible reaction of one reactant forming two products.

Name J178

Reaction equation

$$IP3K_2Ca_IP3 \longrightarrow IP4 + IP3K_2Ca \tag{109}$$

Reactant

Table 114: Properties of each reactant.			
Id Name SBC			
IP3K_2Ca_IP3	IP3K_2Ca_IP3		

Products

Ta	Table 115: Properties of each product.			
	Id	Name	SBO	
	IP4	IP4		
	IP3K_2Ca	IP3K_2Ca		

Kinetic Law

Derived unit contains undeclared units

$$v_{55} = J178_k1 \cdot [IP3K_2Ca_IP3] - J178_k2 \cdot [IP4] \cdot [IP3K_2Ca]$$
(110)

6.56 Reaction J179

This is an irreversible reaction of two reactants forming one product.

Name J179

Reaction equation

$$IP5P + IP3 \longrightarrow IP5P_{-}IP3 \tag{111}$$

Reactants

Table 116: Properties of each reactant.

Id	Name	SBO
IP5P	IP5P	
IP3	IP3	

Table 117: Properties of each product				
	Id	Name	SBO	
	IP5P_IP3	IP5P_IP3		

Kinetic Law

Derived unit contains undeclared units

$$v_{56} = J179_k1 \cdot [IP5P] \cdot [IP3] - J179_k2 \cdot [IP5P_IP3]$$

$$(112)$$

6.57 Reaction J180

This is an irreversible reaction of one reactant forming two products.

Name J180

Reaction equation

$$IP5P_{-}IP3 \longrightarrow IP2 + IP5P \tag{113}$$

Reactant

Table 118: Properties of each reactant.				
	Id	Name	SBO	
	IP5P_IP3	IP5P_IP3		

Products

Table 119: Properties of each product.

Id	Name	SBO
IP2	IP2	
IP5P	IP5P	

Derived unit contains undeclared units

$$v_{57} = J180_k1 \cdot [IP5P_IP3] - J180_k2 \cdot [IP2] \cdot [IP5P]$$
 (114)

6.58 Reaction J181

This is an irreversible reaction of one reactant forming one product.

Name J181

Reaction equation

$$CaER \longrightarrow Ca$$
 (115)

Reactant

Table 120: Properties of each reactant.				
	Id	Name	SBO	
	CaER	CaER		

Product

Table 121: Properties of each product.				
	Id	Name	SBO	_
	Ca	Ca		

Kinetic Law

Derived unit contains undeclared units

$$v_{58} = J181_k1 \cdot [CaER] \cdot [IP3R_Open] - J181_k2 \cdot [Ca]$$
(116)

Produced by SBML2LATEX

6.59 Reaction J182

This is an irreversible reaction of two reactants forming one product.

Name J182

Reaction equation

$$SERCA + Ca \longrightarrow SERCA_Ca$$
(117)

Reactants

Table	122: Properties of each reacta				
	Id	Name	SBO		
	SERCA	SERCA			
	Ca	Ca			

Product

Т	Table 123: Properties of each product		
	Id	Name	SBO
	SERCA_Ca	SERCA_Ca	

Kinetic Law

Derived unit contains undeclared units

$$v_{59} = J182 k1 \cdot [SERCA] \cdot [Ca] - J182 k2 \cdot [SERCA_Ca]$$
(118)

6.60 Reaction J183

This is an irreversible reaction of two reactants forming one product.

Name J183

Reaction equation

$$SERCA_Ca + Ca \longrightarrow SERCA_2Ca$$
(119)

Reactants

Table 124: Properties of each reactant.

Id	Name	SBO
SERCA_Ca	SERCA_Ca	
Ca	Ca	

Table 125: Pro	perties of each	product.
Id	Name	SBO
SERCA_2Ca	SERCA_2Ca	

Kinetic Law

Derived unit contains undeclared units

$$v_{60} = J183_k1 \cdot [SERCA_Ca] \cdot [Ca] - J183_k2 \cdot [SERCA_2Ca]$$
(120)

6.61 Reaction J184

This is an irreversible reaction of one reactant forming two products.

Name J184

Reaction equation

$$SERCA_2Ca \longrightarrow CaER + SERCA_Ca$$
(121)

Reactant

Table 126: Properties of each reactant			
Id	Name	SBO	
SERCA_2Ca	a SERCA_2Ca		

Products

Table 127: Properties of each product.
--

Id	Name	SBO
CaER	CaER	
$SERCA_Ca$	SERCA_Ca	

Derived unit contains undeclared units

 $v_{61} = \texttt{J184_k1} \cdot [\texttt{SERCA_2Ca}] - \texttt{J184_k2} \cdot [\texttt{CaER}] \cdot [\texttt{SERCA_Ca}]$ (122)

6.62 Reaction J185

This is an irreversible reaction of one reactant forming two products.

Name J185

Reaction equation

$$SERCA_Ca \longrightarrow CaER + SERCA$$
(123)

Reactant

Та	able 128: Properties of each reactant.		
	Id	Name	SBO
	SERCA_Ca	SERCA_Ca	

Products

Table	129: Pro	perties of e	each product.
	Id	Name	SBO
	CaER	CaER	
	SERCA	SERCA	

Kinetic Law

Derived unit contains undeclared units

6.63 Reaction J186

This is an irreversible reaction of one reactant forming one product.

Name J186

Reaction equation

$$CaER \longrightarrow Ca \tag{125}$$

Reactant

Table 1	30: Proj	perties of	f each reactant.
	Id	Name	SBO
	CaER	CaER	

Product

Table 13	31: Pr	operties	of each	product.
	Id	Name	SBO	
	Ca	Ca		

Kinetic Law

Derived unit contains undeclared units

$$v_{63} = J186_k1 \cdot [CaER] - J186_k2 \cdot [Ca]$$
 (126)

6.64 Reaction J187

This is an irreversible reaction of two reactants forming one product.

Name J187

Reaction equation

$$PMCA + Ca \longrightarrow PMCA_Ca$$
(127)

Produced by SBML2ATEX

Reactants

Table 132: Properties of each reactant.

Id	Name	SBO
PMCA	PMCA	
Ca	Ca	
-		

Ta	Table 133: Properties of each produ		
	Id	Name	SBO
	PMCA_Ca	PMCA_Ca	

Kinetic Law

Derived unit contains undeclared units

$$v_{64} = J187_k1 \cdot [PMCA] \cdot [Ca] - J187_k2 \cdot [PMCA_Ca]$$

$$(128)$$

6.65 Reaction J188

This is an irreversible reaction of one reactant forming two products.

Name J188

Reaction equation

$$PMCA_Ca \longrightarrow Ca_Cleft + PMCA$$
(129)

Reactant

Tal	Table 134: Properties of each reactant.				
	Id	Name	SBO		
	PMCA_Ca	PMCA_Ca			

Products

Table 135	: Properties	of each	product.

Id	Name	SBO
Ca_Cleft	Ca_Cleft	
PMCA	PMCA	

Derived unit contains undeclared units

$$v_{65} = \texttt{J188_k1} \cdot [\texttt{PMCA_Ca}] - \texttt{J188_k2} \cdot [\texttt{Ca_Cleft}] \cdot [\texttt{PMCA}]$$
(130)

6.66 Reaction J189

This is an irreversible reaction of two reactants forming one product.

Name J189

Reaction equation

$$NaCa_Exch + Ca \longrightarrow NaCa_Exch_Ca$$
 (131)

Reactants

Table 136: Properties of each reactant.				
Id	Name	SBO		
NaCa_Exch	NaCa_Exch			
Ca	Ca			

Product

Table 137: Properties of each product.			
Id	Name	SBO	
NaCa_Exch_Ca	NaCa_Exch_Ca		

Kinetic Law

Derived unit contains undeclared units

$$v_{66} = J189_k1 \cdot [NaCa_Exch] \cdot [Ca] - J189_k2 \cdot [NaCa_Exch_Ca]$$
(132)

6.67 Reaction J190

This is an irreversible reaction of two reactants forming one product.

Name J190

Reaction equation

$$NaCa_Exch_Ca + Ca \longrightarrow NaCa_Exch_2Ca$$
 (133)

Reactants

Table 138: Properties of each reactant.		
Id	Name	SBO
	NaCa_Exch_Ca	
Ca	Ca	

Product

Table 139: Properties of each product.			
Id	Name	SBO	
NaCa_Exch_2Ca	NaCa_Exch_2Ca		

Kinetic Law

Derived unit contains undeclared units

 $v_{67} = J190_k1 \cdot [NaCa_Exch_Ca] \cdot [Ca] - J190_k2 \cdot [NaCa_Exch_2Ca]$ (134)

6.68 Reaction J191

This is an irreversible reaction of one reactant forming two products.

Name J191

Reaction equation

$$NaCa_Exch_2Ca \longrightarrow Ca_Cleft + NaCa_Exch_Ca$$
 (135)

Produced by SBML2LATEX

Reactant

Table 140: Properties of each reactant.		
Id	Name	SBO
NaCa_Exch_2Ca	NaCa_Exch_2Ca	

Products

Table 141: Properties of each product.		
Name	SBO	
Ca_Cleft		
NaCa_Exch_Ca		
	Name Ca_Cleft	

Kinetic Law

Derived unit contains undeclared units

 $v_{68} = \texttt{J191_k1} \cdot [\texttt{NaCa_Exch_2Ca}] - \texttt{J191_k2} \cdot [\texttt{Ca_Cleft}] \cdot [\texttt{NaCa_Exch_Ca}] \quad (136)$

6.69 Reaction J192

This is an irreversible reaction of one reactant forming two products.

Name J192

Reaction equation

$$NaCa_Exch_Ca \longrightarrow Ca_Cleft + NaCa_Exch$$
 (137)

Reactant

Table 142: Properties of each reactant.			
Id	Name	SBO	
NaCa_Exch_Ca	NaCa_Exch_Ca		

Products

Id	Name	SBO
Ca_Cleft	Ca_Cleft	
NaCa_Exch	NaCa_Exch	

Derived unit contains undeclared units

 $v_{69} = J192_k1 \cdot [NaCa_Exch_Ca] - J192_k2 \cdot [Ca_Cleft] \cdot [NaCa_Exch]$ (138)

6.70 Reaction J193

This is an irreversible reaction of one reactant forming one product.

Name J193

Reaction equation

$$Ca_Cleft \longrightarrow Ca$$
 (139)

Reactant

Table 144: Properties of each reactant.					
	Id	Name	SBO		
	Ca_Cleft	Ca_Cleft			

Product

Table 145: Properties of each product.				
	Id	Name	SBO	
	Ca	Ca		

Kinetic Law

Derived unit contains undeclared units

$$v_{70} = J193_k1 \cdot [Ca_Cleft] - J193_k2 \cdot [Ca]$$
 (140)

Produced by SBML2ATEX

6.71 Reaction re96

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$iCaAMPAR + iCaNMDAR \longrightarrow CaPSD$$
 (141)

Reactants

Table 146: Properties of each reactant.					
	Id	Name	SBO		
	iCaAMPAR	iCaAMPAR			
	iCaNMDAR	iCaNMDAR			

Product

Table	e 147: Properties of each product.			
	Id	Name	SBO	
	CaPSD	CaPSD		

Kinetic Law

Derived unit contains undeclared units

$$v_{71} = \frac{-1 \cdot (iCaAMPAR + iCaNMDAR)}{2 \cdot 9.64867 \cdot 10^4 \cdot 0.002}$$
(142)

6.72 Reaction re97

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$CaPSD \longrightarrow Ca$$
 (143)

Reactant

Table 148: Properties of each reactant.

Id	Name	SBO
CaPSD	CaPSD	

Table 14	9: Pr	operties	of each	product.
	Id	Name	SBO	
	Ca	Ca		

Kinetic Law

Derived unit contains undeclared units

$$v_{72} = 0.05 \cdot [\texttt{CaPSD}] \cdot \text{vol}(\texttt{compartment})$$
(144)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- · parameters without a unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

7.1 Species R

Name R

Initial concentration $3.89266904847504 \cdot 10^{-4} \text{ kmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in J0, J4, J8).

$$\frac{d}{dt}R = -v_1 - v_5 - v_9 \tag{145}$$

Produced by SBML2ATEX

7.2 Species Ra

Name Ra

Initial concentration $3.89319081649848 \cdot 10^{-7} \text{ kmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in J5, J9 and as a product in J0, J14).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ra} = v_1 + v_{15} - v_6 - v_{10} \tag{146}$$

7.3 Species LR

Name LR

Initial concentration $1.5836159708699 \cdot 10^{-33} \text{ kmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in J1, J11 and as a product in J4).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{LR} = v_5 - v_2 - v_{12} \tag{147}$$

7.4 Species LRa

Name LRa

Initial concentration $-6.09975847613016 \cdot 10^{-32} \text{ kmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in J10 and as a product in J1, J5, J17).

$$\frac{d}{dt} LRa = v_2 + v_6 + v_{18} - v_{11}$$
(148)

7.5 Species R_Gaq_GDP_bg

Name R_Gaq_GDP_bg

Initial concentration $0.00406139263968745 \text{ kmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in J2, J6 and as a product in J8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{R}_{-}\mathrm{Gaq}_{-}\mathrm{GDP}_{-}\mathrm{bg} = v_9 - v_3 - v_7 \tag{149}$$

7.6 Species Ra_Gaq_GDP_bg

Name Ra_Gaq_GDP_bg

Initial concentration $4.0609927129471 \cdot 10^{-6} \text{ kmol} \cdot \text{l}^{-1}$

This species takes part in five reactions (as a reactant in J7, J12 and as a product in J2, J9, J20).

$$\frac{d}{dt}Ra_{Gaq_{GDP_{bg}}} = v_3 + v_{10} + v_{21} - v_8 - v_{13}$$
(150)

Produced by SBML2ATEX

7.7 Species LR_Gaq_GDP_bg

Name LR_Gaq_GDP_bg

Initial concentration $6.75598591019411 \cdot 10^{-37} \text{ kmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in J3 and as a product in J6, J11).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{LR}_{\mathrm{Gaq}_{\mathrm{GDP}_{\mathrm{b}}} \mathrm{bg}} = v_7 + v_{12} - v_4 \tag{151}$$

7.8 Species LRa_Gaq_GDP_bg

Name LRa_Gaq_GDP_bg

Initial concentration $2.42654539845649 \cdot 10^{-36} \text{ kmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in J15 and as a product in J3, J7, J10, J21).

$$\frac{d}{dt} LRa_Gaq_GDP_bg = v_4 + v_8 + v_{11} + v_{22} - v_{16}$$
(152)

7.9 Species Gaq_GDP_bg

Name Gaq_GDP_bg

Initial concentration $0.0173894166168917 \text{ kmol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in J8, J9, J10, J11 and as a product in J19).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Gaq_GDP_bg} = v_{20} - v_9 - v_{10} - v_{11} - v_{12}$$
(153)

7.10 Species Ra_Gaq0_bg

Name Ra_Gaq0_bg

Initial concentration $3.02095086399659 \cdot 10^{-9} \text{ kmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in J13 and as a product in J12).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ra}_{\mathrm{Gaq0_bg}} = v_{13} - v_{14} \tag{154}$$

7.11 Species LRa_Gaq0_bg

Name LRa_Gaq0_bg

Initial concentration $7.34343136413473 \cdot 10^{-39} \text{ kmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in J16 and as a product in J15).

$$\frac{d}{dt} LRa_Gaq0_bg = v_{16} - v_{17}$$
(155)

7.12 Species Ra_Gaq_GTP_bg

Name Ra_Gaq_GTP_bg

Initial concentration $0.00354488711914096 \text{ kmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in J14, J20 and as a product in J13).

$$\frac{d}{dt}Ra_{Gaq_{GTP_{bg}}} = v_{14} - v_{15} - v_{21}$$
(156)

7.13 Species LRa_Gaq_GTP_bg

Name LRa_Gaq_GTP_bg

Initial concentration $-1.93232758048374 \cdot 10^{-32} \text{ kmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in J17, J21 and as a product in J16).

$$\frac{d}{dt} LRa_Gaq_GTP_bg = v_{17} - v_{18} - v_{22}$$
(157)

7.14 Species GaqGTP

Name GaqGTP

Initial concentration $1.23461735927345 \cdot 10^{-12} \text{ kmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in J18, J165, J166, J167 and as a product in J14, J17).

$$\frac{d}{dt}GaqGTP = v_{15} + v_{18} - v_{19} - v_{42} - v_{43} - v_{44}$$
(158)

7.15 Species Gbg

Name Gbg

Initial concentration $2.39599480303788 \cdot 10^{-7} \text{ kmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in J19 and as a product in J14, J17).

$$\frac{d}{dt}Gbg = v_{15} + v_{18} - v_{20}$$
(159)

Produced by SBML2ATEX

7.16 Species GaqGDP

Name GaqGDP

Initial concentration $2.21874391407848 \cdot 10^{-7} \text{ kmol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in J19 and as a product in J18, J172, J173, J174).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GaqGDP} = v_{19} + v_{49} + v_{50} + v_{51} - v_{20}$$
(160)

7.17 Species IP3

Name IP3

Initial concentration
$$1.07531278043228 \cdot 10^{-4} \text{ kmol} \cdot 1^{-1}$$

This species takes part in five reactions (as a reactant in J80, J177, J179 and as a product in J168, J169).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IP3} = v_{45} + v_{46} - v_{27} - v_{54} - v_{56} \tag{161}$$

7.18 Species DAG

Name DAG

Initial concentration $0.201350856777011 \text{ kmol} \cdot l^{-1}$

This species takes part in two reactions (as a product in J168, J169).

$$\frac{d}{dt}DAG = v_{45} + v_{46}$$
(162)

7.19 Species Ca

Name Ca

Initial concentration $4.90691666502258 \cdot 10^{-5} \text{ kmol} \cdot l^{-1}$

Charge 0

This species takes part in 26 reactions (as a reactant in J76, J77, J78, J79, J81, J87, J88, J89, J90, J91, J92, J93, J94, J163, J164, J175, J176, J182, J183, J187, J189, J190 and as a product in J181, J186, J193, re97).

$$\frac{d}{dt}Ca = v_{58} + v_{63} + v_{70} + v_{72} - v_{23} - v_{24} - v_{25} - v_{26} - v_{28} - v_{29} - v_{30} - v_{31} - v_{32} - v_{33} - v_{33} - v_{34} - v_{35} - v_{36} - v_{40} - v_{41} - v_{52} - v_{53} - v_{59} - v_{60} - v_{64} - v_{66} - v_{67}$$
(163)

Produced by SBML2LATEX

7.20 Species IP3R

Name IP3R

Initial concentration
$$8.65143190764843 \cdot 10^{-4} \text{ kmol} \cdot \text{l}^{-1}$$

This species takes part in two reactions (as a reactant in J76, J80).

$$\frac{d}{dt}IP3R = -v_{23} - v_{27}$$
(164)

7.21 Species IP3R_Ca

Name IP3R_Ca

Initial concentration
$$7.6328454580141 \cdot 10^{-5} \text{ kmol} \cdot l^{-1}$$

This species takes part in two reactions (as a reactant in J77 and as a product in J76).

$$\frac{d}{dt}IP3R_Ca = v_{23} - v_{24}$$
(165)

7.22 Species IP3R_2Ca

Name IP3R_2Ca

Initial concentration $7.49074795061143 \cdot 10^{-6} \text{ kmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in J78 and as a product in J77).

$$\frac{d}{dt}IP3R_2Ca = v_{24} - v_{25}$$
(166)

7.23 Species IP3R_3Ca

Name IP3R_3Ca

Initial concentration $9.80172721883503 \cdot 10^{-7} \text{ kmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in J79 and as a product in J78).

$$\frac{d}{dt}IP3R_3Ca = v_{25} - v_{26}$$
(167)

7.24 Species IP3R_4Ca

Name IP3R_4Ca

Initial concentration $1.44288776605156 \cdot 10^{-7} \text{ kmol} \cdot \text{l}^{-1}$

This species takes part in one reaction (as a product in J79).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IP3R}_{-}4\mathrm{Ca} = v_{26} \tag{168}$$

Produced by SBML2ATEX

7.25 Species IP3R_IP3

Name IP3R_IP3

Initial concentration
$$4.46543773819571 \cdot 10^{-5} \text{ kmol} \cdot \text{l}^{-1}$$

This species takes part in two reactions (as a reactant in J81 and as a product in J80).

$$\frac{d}{dt}IP3R_{-}IP3 = v_{27} - v_{28}$$
(169)

7.26 Species IP3R_Open

Name IP3R_Open

Initial concentration $5.25876737578409 \cdot 10^{-6} \text{ kmol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in J81).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IP3R_Open} = v_{28} \tag{170}$$

7.27 Species CaM

Name CaM

Initial concentration $9.98061332488321 \cdot 10^{-4} \text{ kmol} \cdot 1^{-1}$

This species takes part in one reaction (as a reactant in J87).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CaM} = -v_{29} \tag{171}$$

7.28 Species CaM_Ca

Name CaM_Ca

Initial concentration $1.93477680233643 \cdot 10^{-6} \text{ kmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in J88 and as a product in J87).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CaM}_{-}\mathrm{Ca} = v_{29} - v_{30} \tag{172}$$

7.29 Species CaM_2Ca

Name CaM_2Ca

Initial concentration $3.75063250064924 \cdot 10^{-9} \text{ kmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in J89, J95 and as a product in J88).

$$\frac{d}{dt}CaM_2Ca = v_{30} - v_{31} - v_{37}$$
(173)

Produced by SBML2ATEX

7.30 Species CaM_3Ca

Name CaM_3Ca

Initial concentration $1.15025191744954 \cdot 10^{-10} \text{ kmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in J90, J96 and as a product in J89).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CaM}_{-3}\mathrm{Ca} = v_{31} - v_{32} - v_{38} \tag{174}$$

7.31 Species CaM_4Ca

Name CaM_4Ca

Initial concentration
$$3.52760467136455 \cdot 10^{-12} \text{ kmol} \cdot 1^{-1}$$

This species takes part in two reactions (as a reactant in J97 and as a product in J90).

$$\frac{d}{dt}CaM_4Ca = v_{32} - v_{39}$$
(175)

7.32 Species CaN

Name CaN

Initial concentration $3.08307084668497 \cdot 10^{-5} \text{ kmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in J91).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CaN} = -v_{33} \tag{176}$$

7.33 Species CaN_Ca

Name CaN_Ca

Initial concentration $1.51283697228116 \cdot 10^{-4} \text{ kmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in J92 and as a product in J91).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CaN}_{-}\mathrm{Ca} = v_{33} - v_{34} \tag{177}$$

7.34 Species CaN_2Ca

Name CaN_2Ca

Initial concentration $7.42336429635558 \cdot 10^{-4} \text{ kmol} \cdot \text{l}^{-1}$

This species takes part in two reactions (as a reactant in J93 and as a product in J92).

$$\frac{d}{dt} CaN_2 Ca = v_{34} - v_{35}$$
(178)

Produced by SBML2ATEX

7.35 Species CaN_3Ca

Name CaN_3Ca

Initial concentration $6.91143378885222 \cdot 10^{-5} \text{ kmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in J94 and as a product in J93).

$$\frac{d}{dt}CaN_{-}3Ca = v_{35} - v_{36}$$
(179)

7.36 Species CaN_4Ca

Name CaN_4Ca

Initial concentration $6.43480526513203 \cdot 10^{-6} \text{ kmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in J95, J96, J97 and as a product in J94).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CaN}_{4}\mathrm{Ca} = v_{36} - v_{37} - v_{38} - v_{39} \tag{180}$$

7.37 Species CaN_4Ca_CaM_2Ca

Name CaN_4Ca_CaM_2Ca

Initial concentration $5.79229321482362 \cdot 10^{-12} \text{ kmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in J95).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CaN}_{4}\mathrm{Ca}_{2}\mathrm{Ca}_{2}\mathrm{Ca}_{2}\mathrm{Ca} = v_{37} \tag{181}$$

7.38 Species CaN_4Ca_CaM_3Ca

Name CaN_4Ca_CaM_3Ca

Initial concentration $1.65648565926826 \cdot 10^{-12} \text{ kmol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in J96).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CaN}_{4}\mathrm{Ca}_{-}\mathrm{CaM}_{-}\mathrm{3Ca} = v_{38} \tag{182}$$

7.39 Species CaN_4Ca_CaM_4Ca

Name CaN_4Ca_CaM_4Ca

Initial concentration $1.36196401667878 \cdot 10^{-11} \text{ kmol} \cdot \text{l}^{-1}$

This species takes part in one reaction (as a product in J97).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CaN}_{4}\mathrm{Ca}_{-}\mathrm{CaM}_{4}\mathrm{Ca} = v_{39} \tag{183}$$

Produced by SBML2ATEX 77

7.40 Species PLC2_PIP2

Name PLC2_PIP2

Initial concentration $0.0365906334982299 \text{ kmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in J163, J165 and as a product in J172).

$$\frac{d}{dt}PLC2_PIP2 = v_{49} - v_{40} - v_{42}$$
(184)

7.41 Species PLC2_Ca_PIP2

Name PLC2_Ca_PIP2

Initial concentration $0.00538641608061752 \text{ kmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in J166, J168 and as a product in J163, J170, J173).

$$\frac{d}{dt}PLC2_Ca_PIP2 = v_{40} + v_{47} + v_{50} - v_{43} - v_{45}$$
(185)

7.42 Species PLC2_Ca

Name PLC2_Ca

Initial concentration $2.29326787106452 \cdot 10^{-5} \text{ kmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in J167, J170 and as a product in J168, J174).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{PLC2_Ca} = v_{45} + v_{51} - v_{44} - v_{47}$$
(186)

7.43 Species PLC2_Gq_PIP2

Name PLC2_Gq_PIP2

Initial concentration $1.12386350156032 \cdot 10^{-9} \text{ kmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in J164, J172 and as a product in J165).

$$\frac{d}{dt} PLC2_Gq_PIP2 = v_{42} - v_{41} - v_{49}$$
(187)

Produced by SBML2ATEX

7.44 Species PLC2_Ca_Gq_PIP2

Name PLC2_Ca_Gq_PIP2

Initial concentration $2.60976147069917 \cdot 10^{-10} \text{ kmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in J169, J173 and as a product in J164, J166, J171).

$$\frac{d}{dt}PLC2_Ca_Gq_PIP2 = v_{41} + v_{43} + v_{48} - v_{46} - v_{50}$$
(188)

7.45 Species PLC2_Ca_Gq

Name PLC2_Ca_Gq

Initial concentration $1.63390146299747 \cdot 10^{-8} \text{ kmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in J171, J174 and as a product in J167, J169).

$$\frac{d}{dt} PLC2_Ca_Gq = v_{44} + v_{46} - v_{48} - v_{51}$$
(189)

7.46 Species IP3K

Name IP3K

Initial concentration $2.51427923206463 \cdot 10^{-4} \text{ kmol} \cdot 1^{-1}$

This species takes part in one reaction (as a reactant in J175).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IP3K} = -v_{52} \tag{190}$$

7.47 Species IP3K_Ca

Name IP3K_Ca

Initial concentration $4.11228805229033 \cdot 10^{-5} \text{ kmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in J176 and as a product in J175).

$$\frac{d}{dt}IP3K_Ca = v_{52} - v_{53}$$
(191)

7.48 Species IP3K_2Ca

Name IP3K_2Ca

Initial concentration $6.72594670251113 \cdot 10^{-6} \text{ kmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in J177 and as a product in J176, J178).

$$\frac{d}{dt} IP3K_2Ca = v_{53} + v_{55} - v_{54}$$
(192)

7.49 Species IP3K_2Ca_IP3

Name IP3K_2Ca_IP3

Initial concentration $7.23249431820098 \cdot 10^{-7} \text{ kmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in J178 and as a product in J177).

$$\frac{d}{dt}IP3K_2Ca_IP3 = v_{54} - v_{55}$$
(193)

7.50 Species IP4

Name IP4

Initial concentration $0.0134944771563497 \text{ kmol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in J178).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IP4} = v_{55} \tag{194}$$

7.51 Species IP5P

Name IP5P

Initial concentration $9.88193150800043 \cdot 10^{-4} \text{ kmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in J179 and as a product in J180).

$$\frac{d}{dt}IP5P = v_{57} - v_{56}$$
(195)

7.52 Species IP5P_IP3

Name IP5P_IP3

Initial concentration $1.18068487472253 \cdot 10^{-5} \text{ kmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in J180 and as a product in J179).

$$\frac{d}{dt}IP5P_{-}IP3 = v_{56} - v_{57}$$
(196)

Produced by SBML2ATEX

7.53 Species IP2

Name IP2

Initial concentration $0.197471161846005 \text{ kmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in J180).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IP2} = v_{57} \tag{197}$$

7.54 Species CaER

Name CaER

Initial concentration $0.125246230104744 \text{ kmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in J181, J186 and as a product in J184, J185).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CaER} = v_{61} + v_{62} - v_{58} - v_{63} \tag{198}$$

7.55 Species Ca_Cleft

Name Ca_Cleft

Initial concentration $2.06702116280734 \text{ kmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in J193 and as a product in J188, J191, J192).

$$\frac{d}{dt}Ca_Cleft = v_{65} + v_{68} + v_{69} - v_{70}$$
(199)

7.56 Species SERCA

Name SERCA

Initial concentration $0.0198971929761697 \text{ kmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in J182 and as a product in J185).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SERCA} = v_{62} - v_{59} \tag{200}$$

7.57 Species SERCA_Ca

Name SERCA_Ca

Initial concentration $1.02281239880892 \cdot 10^{-4} \text{ kmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in J183, J185 and as a product in J182, J184).

$$\frac{d}{dt} \text{SERCA}_C a = v_{59} + v_{61} - v_{60} - v_{62}$$
(201)

7.58 Species SERCA_2Ca

Name SERCA_2Ca

Initial concentration $5.2577527097615 \cdot 10^{-7} \text{ kmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in J184 and as a product in J183).

$$\frac{d}{dt} SERCA_2Ca = v_{60} - v_{61}$$
(202)

7.59 Species PMCA

Name PMCA

Initial concentration $8.04995443752187 \cdot 10^{-5} \text{ kmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in J187 and as a product in J188).

$$\frac{d}{dt} PMCA = v_{65} - v_{64}$$
(203)

7.60 Species PMCA_Ca

Name PMCA_Ca

Initial concentration $3.95004555784861 \cdot 10^{-5} \text{ kmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in J188 and as a product in J187).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PMCA}_{-}\mathrm{Ca} = v_{64} - v_{65} \tag{204}$$

7.61 Species NaCa_Exch

Name NaCa_Exch

Initial concentration $9.99079197786183 \cdot 10^{-4} \text{ kmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in J189 and as a product in J192).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NaCa}\mathrm{Exch} = v_{69} - v_{66} \tag{205}$$

Produced by SBML2ATEX

7.62 Species NaCa_Exch_Ca

Name NaCa_Exch_Ca

Initial concentration $9.19954662777323 \cdot 10^{-7} \text{ kmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in J190, J192 and as a product in J189, J191).

$$\frac{d}{dt} \text{NaCa}_\text{Exch}_\text{Ca} = v_{66} + v_{68} - v_{67} - v_{69}$$
(206)

7.63 Species NaCa_Exch_2Ca

Name NaCa_Exch_2Ca

Initial concentration $8.47096589922676 \cdot 10^{-10} \text{ kmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in J191 and as a product in J190).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NaCa}_{\mathrm{Exch}_{2}\mathrm{Ca}} = v_{67} - v_{68}$$
(207)

7.64 Species GDP

Name GDP

Initial concentration $0.13 \text{ kmol} \cdot l^{-1}$

This species takes part in two reactions (as a product in J12, J15), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GDP} = 0 \tag{208}$$

7.65 Species GTP

Name GTP

Initial concentration $0.2 \text{ kmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in J13, J16), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GTP} = 0 \tag{209}$$

7.66 Species L

Name L

Initial concentration $0 \text{ kmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in J4, J5, J6, J7), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{L} = 0 \tag{210}$$

7.67 Species RGS

Name RGS

Initial concentration $0 \text{ kmol} \cdot l^{-1}$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RGS} = 0 \tag{211}$$

7.68 Species PIP2

Name PIP2

Initial concentration $4 \text{ kmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in J170, J171), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathsf{P}\mathsf{I}\mathsf{P}2 = 0 \tag{212}$$

7.69 Species iCaAMPAR

Name iCaAMPAR

Initial amount 0 mol

Charge 0

This species takes part in one reaction (as a reactant in re96), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{i}\mathbf{C}\mathbf{a}\mathbf{A}\mathbf{M}\mathbf{P}\mathbf{A}\mathbf{R} = 0 \tag{213}$$

Produced by SBML2ATEX

7.70 Species iCaNMDAR

Name iCaNMDAR

Initial amount 0 mol

Charge 0

This species takes part in one reaction (as a reactant in re96), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{iCaNMDAR} = 0 \tag{214}$$

7.71 Species CaPSD

Name CaPSD

Initial amount 0 mol

Charge 0

This species takes part in two reactions (as a reactant in re97 and as a product in re96).

$$\frac{d}{dt}CaPSD = v_{71} - v_{72}$$
(215)

References

Dräger, A., Planatscher, H., Wouamba, D. M., Schröder, A., Hucka, M., Endler, L., Golebiewski, M., Müller, W., and Zell, A. (2009). SBML2LATEX: Conversion of SBML files into human-readable reports. Bioinformatics, **25**(11), 1455–1456. 10.1093/bioinformatics/btp170.